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Chapter 3. Section 3.1 Elementary matrices and matrix opera-
tions

Let A be an m by n matrix. The elementary row operations on A
are:

(1) Interchanging two rows;
(2) Multiply a row by a nonzero scalar;
(3) Adding a multiple of one row to another.

Similar definition for elementary column operations – replace “row”
by “column”. We refer to the above by type (1), type (2), and type (3).
A is an elementary matrix if it obtained from In by doing one elemen-

tary row or column operation
Examples of elementary matrices:

(1)

1 0 0
0 1 0
0 0 9



(2)

1 0 0
0 1 −2
0 0 1



(3)

0 0 1
0 1 0
1 0 0


The next theorem captures the connection between elementary matrices
and elementary operations. Informally, it says that doing an elementary
row operation is equivalent to multiplying by an elementary matrix on the
left. Similarly for column operation, but there the multiplication is on the
right

Theorem 1. Suppose that A,B ∈ Mm×n(F ). Then B is obtained from A
by doing one elementary row operation iff B = EA for some elementar row
matrix E ∈Mm×m(F ).

Similarly, B is obtained from A by doing one elementary column operation
iff B = AE for some elementary n by n column matrix E.

Next we give some examples:

Let A =

 1 0 1
−1 4 0
1 1 1


1
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Type (1). Suppose that E =

0 1 0
1 0 0
0 0 1


Then EA =

−1 4 0
1 0 1
1 1 1


Type (2). Suppose that E =

1 0 0
0 5 0
0 0 1


Then EA =

 1 0 1
−5 20 0
1 1 1


Type (3). Suppose that E =

1 0 0
0 1 0
0 3 1


Then EA =

 1 0 1
−1 4 0
−2 13 1


Theorem 2. Elementary matrices are invertible, and the inverse of an el-
ementary matrix is elementary of the same type.

Proof. We go over the three types. Suppose that E is an elementary matrix.
We only consider row operations; the column case is similar.

(1) If E is of type (1) - interchanging rows i and j; then E−1 = E.
(2) If E is of type (2) - multiplying row i by the scalar c, then E−1 is

multiplying the same row by 1/c.
(3) E is of type (3) - adding a multiple of one row to another, say adding

cRi to Rj . Then E−1 is adding −cRi to Rj

In each of the above three cases, doing there two operations cancel out
and takes you back to the identity matrix. So EE−1 = In

�

As a corollary we get that the product of elementary matrices is also an
invertible matrix:

Corollary 3. Suppose A = E1...Ek, where each Ei is an elementary matrix.
Then A is invertible.

Proof. Let B = E−1
k ...E−1

1 . Then AB = BA = In, and so B = A−1.
�

Later we will show that the converse is also true i.e. every invertible
matrix can be written as the product of elementary matrices.

Section 3.2 The Rank of a Matrix and Matrix Inverses
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Definition 4. Let A ∈ Mk×n(F ). Define the rank of A, rank(A) =
rank(LA). I.e. it is the dimension of the range of LA : Fn → F k.

Lemma 5. Let A ∈Mn×n(F ). A is invertible iff rank(A) = n.

Proof. A is invertible iff LA is an isomorphism iff LA is onto iff rank(A) =
dim ran(LA) = dim(Fn) = n. �

Lemma 6. Let A ∈Mk×n(F ). The rank of A equals the maximum number
of its linearly independent columns i.e. the dimension of the column space
of A.

Proof. We have LA : Fn → F k, and let β = {e1, ..., ek} be the standard
basis for F k. Recall that for every i,

LA(ei) = Aei = ai,

where ai is the i-th column of A. Then,
rank(A) = rank(LA) = dim(ran(LA)) = dimSpan({LA(e1), ..., LA(ek)}) =

dimSpan({a1, ..., ak)}).
That is exactly the the maximum number of its linearly independent

columns.
�

Exercise: Suppose that T : V →W is a linear transformation, U : V → V
is invertible, and L : W →W is also invertible. Show that:

rank(TU) = rank(T ) = rank(LT )

Theorem 7. Let A ∈ Mk×n(F ). Suppose that P ∈ Mk×k(F ) is invertible,
and Q ∈Mn×n(F ) is invertible. Then,

rank(A) = rank(PA) = rank(AQ).

Proof. By the above exercise,

• rank(PA) = rank(LPA) = rank(LPLA) = rank(LA) = rank(A)
• rank(AQ) = rank(LAQ) = rank(LALQ) = rank(LA) = rank(A).

�

Corollary 8. Elementary row operations preserve the rank.

Next: computing the rank of a matrix with elementary row and column
operations.

Theorem 9. Let A ∈ Mk×n(F ). By doing a finite number of row and
column elementary operation, A can be transformed into a matrix of the
form

D =

(
Ir 01
02 03

)
where r ≤ k, r ≤ n, and 01, 02, 03 are zero matrices. I.e. Dii = 1 for all
i ≤ r and Dij = 0 for all other entries.



4 MATH 320 NOTES, WEEK 11

Theorem 10. Suppose A and D are as above. Then A = BDC, where B
and C are the product of elementary matrices.

Moreover if k = n, then

r = n iff A is invertible.

Proof. B corresponds to all the elementary row operations and C corre-
sponds to all the elementary column operations.

Also suppose that k = n. Then A is invertible iff rank(A) = n iff r = n
iff D = In and so A = BC. �

Corollary 11. A is invertible iff it is a product of elementary matrices.

Next we list a couple of more facts relating to the transpose of a matrix.
Recall that for A ∈ Mk×n(F ), the transpose, At ∈ Mn×k(F ) is the matrix
where (At)ij = Aji. Recall also that (AB)t = BtAt. The following lemma
summarizes the properties that are preserved by taking the transpose.

Lemma 12. (1) If E is an elementary matrix, so is Et.
(2) If A is invertible, then so is At.
(3) rank(A) = rank(At),
(4) The row and column space of A have the same dimension.

Proof. For item (1), it is an exercise to check that if E is an elementary row
matrix, then Et is an elementary column matrix of the same type. Similarly,
if E is an elementary column matrix, then Et is an elementary row matrix
of the same type.

For item (2), let A be an invertible matrix. Then A = E1...Ek where each
Ei is an elementary matrix. Then At = (E1...Ek)t = Et

k...E
t
1, which is also

a product of elementary matrices. So, At is also invertible.
For item (3), let A ∈ Mk×n(F ). Write A = BDC as in theorem 10.

Then At = (BDC)t = CtDtBt = CtDBt. Both B and C are products of
elementary matrices, so Bt and Ct are also products of elementary matrices.
Then by theorem 9, rank(A) = rank(At) = r.

Item (4) follows by (3): dim(row space(A)) = dim(column space(At)) =
rank(At) = rank(A) = dim(column space(A)).

�

Computing inverses:

Suppose A is an invertible n by n matrix. Take the n by 2n matrix (A|In).
Do elementary row operations until you get a matrix of the form (In|B).
Then B = A−1.

Section 3.3 Systems of linear equations

Suppose that A ∈ Mk×n(F ), b ∈ F k, x ∈ Fn. Consider the following
system of k linear equations and n unknowns:

Ax = b,
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where A, b are given and we want to solve for x.
In this section we will go over criteria to determine when solutions exists

and if the solution is unique.

Definition 13. The system Ax = b is called homogeneous is b = ~0.

First we investigate when homogeneous systems have a nontrivial solution.
(Note that ~0 is always a solution for the system Ax = ~0).

Theorem 14. Let K denote all solutions to the system Ax = ~0, where
A ∈Mk×n(F ). Then K = ker(LA), and so it is a subspace of Fn; dim(K) =
n− rank(A).

Proof. LA : Fn → F k, and for every s ∈ Fn, s is a solution to Ax = ~0 iff
As = LA(s) = ~0 iff s ∈ ker(LA). By the dimension theorem

dim(K) = n− rank(A).

�

As a corollary we can show that a homogenous system with more un-
knowns that equations, always has a nontrivial (i.e. nonzero) solution.

Corollary 15. If A ∈Mk×n(F ), and k < n, then the system Ax = ~0 always
has a nontrivial solution.

Proof. Let K be all solutions. Since rank(A) ≤ k < n, it follows that
dim(K) = n− rank(A) > 0, so K has nonzero vectors. �

Next we investigate solutions to nonhomogeneous systems. We will see
that although the set os solutions is not a subspace like in homogeneous
systems, it is the next best thing.

Theorem 16. Suppose A ∈ Mk×n(F ), and K is the set of solutions to the
system Ax = b. Denote KH to be the set of solutions to the corresponding
homogeneous system Ax = ~0. Let s be any solution to Ax = b. Then,

K = {s}+KH = {s+ k | k ∈ KH}
Proof. Let s be any solution to Ax = b. First we show that {s}+KH ⊂ K.
Suppose that k ∈ KH . We want to show that s+ k ∈ K, i.e. that s+ k is a
solution to Ax = b. To do that, simply check

A(s+ k) = As+Ak = As+~0 = b.

So s+ k ∈ K.
For the other direction, suppose that w ∈ K; we have to show that

w ∈ {s} + KH . Since both w and s are solution to Ax = b, we have

Aw = b = As, and so Aw −As = ~0.
Simplifying the left hand side, we get

A(w − s) = ~0⇒ w − s ∈ KH .

Setting k := w − s, we get that w = s+ k ∈ {s}+KH

�
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Finally, we investigate for which vectors b, the system Ax = b is consis-
tent, which means that there is a solution.

Lemma 17. Suppose that A ∈Mn×n(F ) is invertible. Then for any b ∈ Fn,
the system Ax = b has exactly one solution, given by A−1b.

Proof. Multiply by A−1 on both sides of the equation Ax = b. �

Lemma 18. Suppose that Ax = b is a system of linear equations, A ∈
Mk×n(F ). Then the system is consistent iff rank(A) = rank(A|b). Here
(A|b) the the augmented matrix obtained by adding b as an additional column
to A.

Proof. Let a1, ..., an be the columns ofA. Recall that ran(LA) = Span({a1, ..., an}),
and also that the rank of a matrix equals the dimension of the column space.

The system is consistent iff there is some s ∈ Fn, such that As = b iff
b ∈ ran(LA) = Span({a1, ..., an}) iff
dimSpan({a1, ..., an}) = dimSpan({a1, ..., an, b}) iff
rank(A) = rank(A|b).

�


